


ISL makes modern methods accessible to a wide audience without requiring a background in Statistics or Computer Science.

Inspired by "The Elements of Statistical Learning'' (Hastie, Tibshirani and Friedman), this book provides clear and intuitive guidance on how to implement cutting edge statistical and machine learning methods. "An Introduction to Statistical Learning (ISL)" by James, Witten, Hastie and Tibshirani is the "how to'' manual for statistical learning.

Here's a review (taken from the book's Amazon site) by Larry Wasserman of Carnegie Mellon University: But you don't need to take my word for how essential of a text it is. Another major difference between these 2 titles, beyond the level of depth of the material covered, is that ISLR introduces these topics alongside practical implementations in a programming language, in this case R.Īs mentioned above, the book is an absolute classic in the genre. Naive Bayes and generalized linear modelsĪn Introduction to Statistical Learning, with Applications in R (ISLR) can be considered a less advanced treatment of the topics found in another classic of the genre written by some of the same authors, The Elements of Statistical Learning.The second edition has been expanded to include the following topics of note: Sparse methods for classification and regression.Topics highlighted originally from the first edition include: This book is appropriate for anyone who wishes to use contemporary tools for data analysis. An Introduction to Statistical Learning provides a broad and less technical treatment of key topics in statistical learning. While the original has been around since 2013, the second edition was published very recently, and is now freely-available via PDF on the book's website.Ī description, directly from the books' website:Īs the scale and scope of data collection continue to increase across virtually all fields, statistical learning has become a critical toolkit for anyone who wishes to understand data. The book, a staple of statistical learning texts, is accessible to readers of all levels, and can be read without much of an existing foundational knowledge in the area. An Introduction to Statistical Learning, with Applications in R, written by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, is an absolute classic in the space.
